Search results for "ion temperature"

showing 10 items of 220 documents

Size dependence of the Josephson critical behavior in pyrolytic graphite TEM lamellae

2014

We have studied the transport characteristics of TEM lamellae of different widths obtained from a graphite sample with electrical contacts at the edges of the embedded interfaces. The temperature dependence of the resistance, as well as the current-voltage characteristics, are compatible with the existence of Josephson-coupled superconducting regions. The transition temperature at which the Josephson behavior sets in decreases with a decreasing interface width and vanishes for widths below 200 nm. This interface-size dependence provides an explanation for differences observed in the transport behavior of graphite-based samples with interfaces, and it appears to be related to the influence o…

SuperconductivityMaterials scienceCondensed matter physicsTransition temperatureMetals and AlloysCondensed Matter PhysicsElectrical contactsWeak localizationCondensed Matter::SuperconductivitySuperconducting critical temperatureMaterials ChemistryCeramics and CompositesGraphitePyrolytic carbonElectrical and Electronic EngineeringSize dependenceSuperconductor Science and Technology
researchProduct

Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

2017

On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hy…

MultidisciplinarySum-frequency generationMaterials scienceBilayerTransition temperatureSum frequency generationSurface meltingWaterNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesSpectral line0104 chemical sciencesMolecular dynamicsChemical physicsCommentariesMelting pointStepwise0210 nano-technologySpectroscopyCrystalline iceLayer (electronics)Proceedings of the National Academy of Sciences
researchProduct

Pressure effect on temperature induced high-spin–low-spin phase transitions

2002

The effect of hydrostatic pressure on the transition temperature and the hysteresis widths of first-order spin crossover phase transitions is considered in the frame of the mean field theory and on the basis of the scope of recent pressure experiments. Relevant parameters for a qualitative description of the behaviour of spin transition compounds under pressure are derived and analysed.

HysteresisPhase transitionCondensed matter physicsMean field theorySpin crossoverChemistryTransition temperatureHydrostatic pressureSpin transitionGeneral Physics and AstronomyPhysical and Theoretical ChemistrySpin-½Chemical Physics
researchProduct

Phase behaviour and interfacial tension of polysiloxane blends

1998

Abstract The cloud point curve for blends of poly(dimethyisiloxane) (PDMS, M w = 2.5kg mol −1 ) and poly(hexylmethylsiloxane) (PHMS, M w = 113kg mol − ] was determined turbidimetrically. The system demixes upon cooling and the UCST amounts to 36°C. The interfacial tension γ was determined at the critical composition for three temperatures by means of a spinning drop tensiometer. The dependence of γ on the reduced critical temperature can be described within experimental error by both the mean field theory and the Ising-3D theory.

Materials sciencePolymers and PlasticsDrop (liquid)Organic ChemistryThermodynamicsSurface tensionMolten stateMean field theoryUpper critical solution temperaturePolymer chemistryMaterials ChemistryPolymer blendSpinningPhase diagramPolymer
researchProduct

Isothermal relaxation of discommensurations in K2ZnCl4

1994

At the incommensurate-ferroelectric transition temperature T c of K 2 ZnCl 4 , the dielectric susceptibility contains an anomalous contribution both above and below T c . Previous quasi-static dielectric measurements and hysteresis loops demonstrated that this anomalous part arises from the peculiar dynamics of discommensurations. We have used isothermal dielectric measurements to get some insight into the long time dynamics of these discommensurations. We have found that the characteristic relaxation times τ are of the order of 10 4 s in the incommensurate and in the ferroelectric phase. Even more unusual is a non-monotonous relaxation which is observed in a restricted temperature range ab…

010302 applied physicsMaterials scienceCondensed matter physicsTransition temperatureGeneral EngineeringStatistical and Nonlinear PhysicsDielectricAtmospheric temperature range01 natural sciencesFerroelectricityIsothermal processHysteresisCondensed Matter::Materials SciencePhase (matter)[PHYS.HIST]Physics [physics]/Physics archives0103 physical sciencesRelaxation (physics)010306 general physics
researchProduct

Properties of the Ising magnet confined in a corner geometry

2007

Abstract The properties of Ising square lattices with nearest neighbor ferromagnetic exchange confined in a corner geometry, are studied by means of Monte Carlo simulations. Free boundary conditions at which boundary magnetic fields ± h are applied, i.e., at the two boundary rows ending at the lower left corner a field + h acts, while at the two boundary rows ending at the upper right corner a field − h acts. For temperatures T less than the critical temperature T c of the bulk, this boundary condition leads to the formation of two domains with opposite orientation of the magnetization direction, separated by an interface which for T larger than the filling transition temperature T f ( h ) …

PhysicsCondensed matter physicsTransition temperatureGeneral Physics and AstronomyBoundary (topology)GeometrySurfaces and InterfacesGeneral ChemistryCondensed Matter Physics01 natural sciences010305 fluids & plasmasSurfaces Coatings and FilmsMagnetic fieldMagnetizationFerromagnetism0103 physical sciencesIsing modelBoundary value problem010306 general physicsConfined spaceApplied Surface Science
researchProduct

Design of PNIPAAM covalently grafted on halloysite nanotubes as a support for metal-based catalysts

2016

A thermo-responsive polymer such as poly(N-isopropylacrylamide) (PNIPAAM) was covalently grafted on the external surface of halloysite nanotubes (HNTs) by means of microwave irradiation. This nanomaterial was used as a support and stabilizer for palladium nanoparticles. The obtained HNT–PNIPAAM/PdNPs was characterized by means of TGA, SEM, EDS and TEM analyses. The palladium content of the catalyst was estimated to be 0.4 wt%. The stability of the catalytic material at different temperatures (below and above the PNIPAAM lower critical solution temperature) was tested in the Suzuki reaction under microwave irradiation. In addition, TEM analysis after five consecutive runs was performed. The …

inorganic chemicalsMaterials scienceGeneral Chemical Engineeringchemistry.chemical_element02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesHalloysiteLower critical solution temperatureNanomaterialsCatalysischemistry.chemical_compoundSuzuki reactionhalloysite PNIPAAM; microwave Suzuki reaction waterPolymer chemistryhalloysite PNIPAAMPhenylboronic acidSettore CHIM/02 - Chimica Fisicachemistry.chemical_classificationmicrowave Suzuki reaction waterSettore CHIM/06 - Chimica OrganicaGeneral ChemistryPolymer021001 nanoscience & nanotechnology0104 chemical scienceschemistryengineering0210 nano-technologyPalladiumNuclear chemistryRSC Advances
researchProduct

Guest Effect on Nanopatterned Spin-Crossover Thin Films

2011

International audience; Nanopatterned thin films of the metal–organic framework {Fe(bpac)[Pt(CN)4]} (bpac=bis(4‐pyridyl)acetylene) are elaborated by the combination of a sequential assembly process and a lithographic method. Raman microspectroscopy is used to probe the temperature dependence of the spin state of the iron(II) ions in the films (40–90 nm in thickness), and reveals an incomplete but cooperative spin transition comparable to that of the bulk material. Adsorption/desorption of pyridine guest molecules is found to have a substantial influence on the spin‐crossover properties of the thin layers. This interplay between host–guest and spin‐crossover properties in thin films and nano…

Materials scienceSpin statesSpin transitionNanotechnology02 engineering and technologyMicroscopy Atomic ForceSpectrum Analysis Raman010402 general chemistry01 natural sciencesBiomaterialssymbols.namesakeSpin crossoverMetals HeavyDesorptionTransition TemperatureGeneral Materials ScienceThin film[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsCyanidesThin layersTransition temperatureGeneral Chemistry021001 nanoscience & nanotechnologyNanostructures0104 chemical sciencessymbolsPhysical chemistrySpin Labels0210 nano-technologyRaman spectroscopyBiotechnology
researchProduct

Influence of End Groups on the Stimulus-Responsive Behavior of Poly[oligo(ethylene glycol) methacrylate] in Water

2010

The influence of the chemical structure of both end groups onto the lower critical solution temperature (LCST) of poly[oligo(ethylene glycol) monomethyl ether methacrylate] (POEGMA) in water was systematically investigated. POEGMA of Mn = 3550 g/mol and Mw/Mn = 1.14 prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization was equipped with two different functional end groups in a one-step postpolymerization reaction combining activated esters, functional amines, and functional methane thiosulfonates. As end groups, n-propyl, n-hexadecyl, di(n-octadecyl), poly(ethylene glycol)-550 (PEG), 1H,1H-perfluorononyl, azobenzene, and trimethylethylammonium groups were system…

Polymers and PlasticsChemistryOrganic ChemistryChain transferLower critical solution temperatureMicelleInorganic ChemistryHydrophobic effectEnd-groupchemistry.chemical_compoundPolymerizationAzobenzenePolymer chemistryMaterials ChemistryEthylene glycolMacromolecules
researchProduct

Phase transition of tetragonal copper sulfide Cu2S at low temperatures

2017

The low-temperature behavior of tetragonal copper sulfide, ${\mathrm{Cu}}_{2}\mathrm{S}$, was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal ${\mathrm{Cu}}_{2}\mathrm{S}$ undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of $\ifmmode\pm\else\textpm\fi{}21$ K, an e…

Phase transitionMaterials scienceAbsorption spectroscopyBand gapTransition temperaturechemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperHeat capacity0104 chemical sciencesCrystallographyTetragonal crystal systemchemistryOrthorhombic crystal system0210 nano-technologyPhysical Review B
researchProduct